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The conservation of mass, momentum and energy are not sufficient to close a system
of jump relations for shocks propagating in a heterogeneous mixture of compressible
fluids. We propose here a closed set of relations corresponding to a two-stage structure
of shock fronts. At the first stage, microkinetic energy due to the relative motion
of mixture components is produced at the shock front. At the second stage, this
microkinetic energy disappears inducing strong variations in the thermodynamical
states that reach mechanical equilibrium. The microkinetic energy produced at the
shock front is estimated by using an idea developed earlier for turbulent shocks in
compressible fluids. The relaxation zone between the shocked state and the equilibrium
state is integrated over a thermodynamic path a justification of which is provided.
Comparisons with experiments on shock propagation in a mixture of condensed
materials confirm the proposed theory.

1. Introduction
Knowledge of the qualitative and quantitative characteristics of shock waves

propagating in heterogeneous mixtures of compressible fluids is important in many
applications. The governing equations for such mixtures are hyperbolic but not in
divergence form (Bedford & Drumheller 1978; Baer & Nunziato 1986; Bdzil et al.
1999; Kapila et al. 2001; Saurel & Le Metayer 2001; Gavrilyuk & Saurel 2002;
Saurel, Gavrilyuk & Renaud 2003). These models can also be used for the study
of high-amplitude shocks in mixtures of condensed materials since in such extreme
conditions the stress tensor in solids is approximately spherical.

It is well known that shocks in realistic heterogeneous materials should be
considered as fronts and not as singular interfaces where the basic flow parameters
are discontinuous. By Rankine–Hugoniot relations for such shock fronts we mean
algebraic relations between equilibrium states behind and ahead of the front. Formally,
these relations can be implicitly obtained by studying the structure of the relaxation
zone in a complete model involving pressure, velocity and temperature disequilibrium
(see, for example, Fedorov & Fedorova 1992; Kapila et al. 1997). Such a study
needs precise knowledge of the mechanical and thermal relaxation process, which
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is often known only approximatively. For the numerical treatment of shock wave
dynamics approximate Riemann solvers are usually used. To formulate such Riemann
solvers, explicit jump relations are needed. As was stressed by Kapila et al. (1997),
“equilibrium with respect to even one of the process renders the mathematical model
simpler, because the corresponding relaxation zone can be treated as a surface of
discontinuity, across which the equilibrating quantity jumps”. In this article we will
adopt this approach by assuming pressure equilibrium during the relaxation process.
On the otherhand, we do not assume velocity and temperature equilibrium. This
hypothesis agrees with relaxation time estimates given by Kapila et al. (2001). They
showed that the temperature difference can be large because thermal relaxation
occurs too slowly compared to mechanical relaxation. The last conclusion was also
mentioned in Krueger & Vreeland (1991).

It is often assumed that components have not only equal pressures but also equal
particle velocities. Even under such simplified hypotheses, the conservation of the
mass, the momentum and the energy are not sufficient to close the system of jump
relations. A phenomenological approach was proposed by Dremin & Karpukhin
(1960), McQueen et al. (1970), and Alekseev, Al’tshuler & Krupnikova (1971). It is
based on the use of the Hugoniots of each component under pressure and velocity
equilibrium. This approach has been intensively validated (see, for example, Trunin
2001). Saurel et al. (2007) revisited this approach and linked it to the single pressure-
and-velocity model of Kapila et al. (2001). They also justified this method for weak
shocks by analysing the dispersive character of shocks in two-phase mixtures.

However, even for mixtures with approximately equal volume concentrations where
the friction between components is extremely important, the hypothesis of equal
particle velocities of components is far from evident. In a series of experimental
and numerical works Nesterenko (2001) introduced the notion of ‘microkinetic
energy’ appearing during the shock wave loading of powders. This microkinetic
energy appears in a shock front, and is the exact analogue of the turbulent energy
characterizing the deviation of the velocity field from the average velocity. The
microkinetic energy is manifested, for example, through the formation of microjets in
the vicinity of contact interfaces. The amount of this microkinetic energy depends on
the amplitude of the shock wave. When the amplitude increases, this energy increases
too. The microkinetic energy decreases very rapidly in the relaxation zone where it
is transformed into the internal energy or plastic deformations (Bdzil et al. 1999).
This microkinetic energy is hardly measurable in experiments but is very important
to the overall material behaviour, e.g. bonding between particles in powder mixtures
or the initiation of chemical reactions under shock loading (Nesterenko 2001). This
is why its theoretical estimation is necessary. Using a two-dimensional computer code
for mesoscale computations, a quantitative estimation of the microkinetic energy
appearing under impulse loading of granular materials was obtained by Benson et al.
(1997). Recent results on the three-dimensional measurements and simulations of
shock wave propagation in granular media have been reported by Baer & Trott (2002)
and Bardenhagen et al. (2002). The results presented in Baer & Trott (2002) confirm
the presence of highly fluctuating mechanical and thermodynamical fields during the
shock wave propagation. The probability distribution function data reported by these
authors could provide information about the distribution of the microkinetic energy
in the shock front.

The aim of this article is to determine jump conditions that account for microkinetic
effects in heterogeneous mixtures. At the first stage, both components are compressed
in such a way that the microkinetic energy due to the relative motion of components
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Figure 1. Qualitative pressure behaviour in a shock wave is shown. The initial state
characterized by the pressure P0 jumps to a state denoted by an asterisk, and then relaxes to
a new equilibrium state. The microkinetic energy due to the relative motion of components
appears at the asterisk state. This energy disappears in the relaxation zone.

appears at the shock front. The second stage is a stiff relaxation to the equilibrium
state where this energy is zero (see figure 1). There are two unknowns in this
mechanism:

(i) the amount of the microkinetic energy (we will sometimes call it ‘turbulent
energy’) appearing in the shock front,

(ii) the distribution of the thermodynamic energy between components during the
relaxation process.

We will propose a quantitative estimation of the microkinetic energy based on an
idea developed earlier by Gavrilyuk & Saurel (2006) for compressible turbulent flows:
the production of ‘turbulent entropy’, clearly linked with the ‘turbulent energy’, was
maximal at the shock front. Then, the relaxation zone between the shocked state
and the equilibrium state is integrated over a thermodynamic path a justification of
which is provided. A comparison with experimental data shows the validity of this
approach.

2. Reduced model
The reduced equations for the mixture mass, momentum and energy obtained by

summing the phase equations of the two-phase flow model by Baer & Nunziato
(1986) are

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (2.1a)

∂

∂t
(ρu) +

∂

∂x
(p + ρu2 + 2k) = 0, (2.1b)

∂

∂t

(
ρε +

ρu2

2
+ k

)
+

∂

∂x

(
u

(
ρε +

ρu2

2
+ 3k + p

)

+ (ρy1y2(h1 − h2) + k(y2 − y1))(u1 − u2)

)
= 0. (2.1c)

Here ρ = α1ρ1 +α2ρ2 is the mixture density, ρi are the phase densities; u = y1u1 +y2u2

is the mixture velocity, ui are the phase velocities, yi = αiρi/ρ are the mass fractions of
each phase; p = α1p1 +α2p2 is the mixture pressure, pi are the phase pressures which
are given functions of the densities ρi and the specific entropies ηi; ε = y1ε1 + y2ε2

is the specific internal energy of the mixture, εi is the phase internal energy which
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is assumed to be a given function of the specific volume vi = 1/ρi and the pressure
pi; k = α1ρ1α2ρ2 (u2 − u1)

2 /ρ is the microkinetic energy due to the relative motion
of components, hi are the phase enthalpies. It is assumed that the Gibbs identity for
each phase is valid:

θidηi = dεi + pidvi, i = 1, 2, (2.2)

where θi are the temperatures of the pure components.
A formal averaging of system (2.1), in which the odd moments of w = u2 − u1

are assumed to be zero, gives equations reminiscent of the equations of turbulent
compressible flows (we will use the same notation for the averaged variables):

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (2.3a)

∂

∂t
(ρu) +

∂

∂x
(p + ρu2 + 2k) = 0, (2.3b)

∂

∂t

(
ρε +

ρu2

2
+ k

)
+

∂

∂x

(
u

(
ρe +

ρu2

2
+ 3k + p

))
= 0. (2.3c)

We add two evolution equations to complete system (2.3). The first is the conservation
of the mass fraction along the trajectories related to the average mixture velocity,
and the second is the conservation of the ‘turbulent entropy’ � = k/ρ3 along the
trajectories:

∂y2

∂t
+ u

∂y2

∂x
= 0,

∂

∂t

(
k

ρ3

)
+ u

∂

∂x

(
k

ρ3

)
= 0. (2.4)

The equation for the turbulent entropy � = k/ρ3 is a consequence of the energy
equation, the pressure equilibrium condition (p1 = p2 = p), and the condition that
the flow is isentropic:

dηi

dt
= 0, i = 1, 2. (2.5)

3. Non-equilibrium multi-dimensional model
We present here a multi-dimensional analogue of system (2.3)–(2.5), and introduce

relaxation terms compatible with the second law of thermodynamics. The governing
equations are:

∂ρ

∂t
+ ∇ · (ρu) = 0,

∂(yiρ)

∂t
+ ∇ · (yiρu) = 0, i = 1, 2, (3.1a, b)

∂ρu
∂t

+ ∇ · (ρu ⊗ u + P I) = 0, (3.1c)

P = p + (Γ − 1)k, p = p1 (ρ1, η1) = p2 (ρ2, η2) , k = �ρΓ , (3.1d–f)

∂

∂t

(
ρε +

ρ |u|2

2
+ k

)
+ ∇ ·

(
u
(

ρε +
ρ |u|2

2
+ k + P

))
= 0, (3.1g)

d�

dt
= �̇,

dηi

dt
= η̇i , i = 1, 2,

d

dt
=

∂

∂t
+ u · ∇. (3.1h–j)

Here � = k/ρΓ is the ‘turbulent entropy’. The parameter Γ is the ‘turbulent’ polytropic
exponent defined by the space geometry (Γ = 5/3, 2 or 3 depending whether
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the velocity fluctuations are three-dimensional, two-dimensional or one-dimensional,
respectively). For example, for the mixture of solids in the one-dimensional case we
usually take Γ = 3 (the relative velocity of components which is considered as a fluctu-
ation is essentially one-dimensional). This is different from the turbulent motion of gas
where one usually takes Γ = 5/3 (the fluctuation velocity components are isotropic).
Finally, η̇i and �̇ are unknown production terms which will be determined later.

Equations (3.1) and the Gibbs identities (2.2) imply the entropy equation

ρ

2∑
i=1

θi

d(yiηi)

dt
+ ρΓ d�

dt
= 0. (3.2)

When one of the phases is absent, equations (3.1) are reduced to the classical
dissipation-free turbulent k-model (Mohammadi & Pironneau 1994; Wilcox 1998).
The two-velocity effects are incorporated into model (3.1) in the simplest manner.

System (3.1) is hyperbolic. The sound speed is

c2
T = c2

W + Γ (Γ − 1) �ρΓ −1,
1

ρc2
W

=
α1

ρ1c
2
1

+
α2

ρ2c
2
2

,

where cW is the Wood sound speed (Wood 1930), and c2
i are the sound speed of each

component.
To study the evolution of physical parameters in the relaxation zone, we need to

know the production terms �̇ and η̇i , i = 1, 2. Note that � does not have the same
dimension and the behaviour as the classical thermodynamic entropy. It increases
immediately in a shock front, but, unlike the thermodynamic entropy, disappears in
the relaxation zone by transforming to internal energies of components or irreversible
deformations. The simplest expression for �̇ in the relaxation zone is

�̇ = − �

τrel

,

where τrel is a characteristic relaxation time. The entropy equation (3.2) will then
become

ρ

2∑
i=1

θi

d(yiηi)

dt
= ρΓ �

τrel

� 0.

Below, we will give physical arguments for the choice of the entropy production terms
η̇i based on the assumption that thermal exchanges between mixture components are
negligible (Krueger & Vreeland 1991; Kapila et al. 2001).

4. Rankine–Hugoniot relations for the non-equilibrium model
Consider a stationary one-dimensional shock front (see figure 1) with zero turbulent

entropy ahead of the front. The conservation of the mass, the momentum and the
energy are

y2 = y20, ρ(u − D) = ρ0(u0 − D) = −ρ0D = m = const, (4.1a, b)

P − P0 + m2(v − v0) = 0, P = p + (Γ − 1)�ρΓ , (4.1c, d)

p = p1 = p2, pi = pi

(yiρ

αi

, ηi

)
, i = 1, 2, (4.1e, f)

ε + �ρΓ −1 − ε0 + 1
2
(P + P0)(v − v0) = 0. (4.1g)
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Here D is the front velocity, and subscript 0 denotes the initial state. For each
� � 0 consider the turbulent Hugoniot surface H�(v, α2, P ; v0, α20, P0, y20) = 0 of
centre (v0, α20, P0, y20) where

H�(v, α2, P ; v0, α20, P0, y20) = E(v, α2, P , �) − E(v0, α20, P0, 0) + 1
2
(P + P0)(v − v0),

E(v, α2, P , �) = y1ε1

(
α1v

y1

, P − (Γ − 1)�v−Γ

)

+ y2ε2

(
α2v

y2

, P − (Γ − 1)�v−Γ

)
+ �v−(Γ −1)

and the turbulent Rayleigh plane M(v, P ; v0, P0) = 0 where

M(v, P ; v0, P0) = P − P0 + m2(v − v0).

The initial and final equilibrium states corresponding to � = 0 belong to the curve
which is the intersection of the Hugoniot surface H0 = 0 and the Rayleigh plane
M = 0 in the space (v, α2, P ). The intermediate state * belongs to the intersection of
H�∗ = 0 and M = 0 where �∗ should be determined somehow.

Let us suppose that

∂E

∂�

∣∣∣∣
v,α2,P

< 0. (4.2)

In the case of a single component we have called this inequality the condition of
‘exothermic turbulence’ (Gavrilyuk & Saurel 2006) by analogy with detonation theory
(Fickett & Davis 1979). For a mixture of materials where each phase is governed by
the stiffened gas equation of state

εi(vi, pi) =

(
pi + γip∞,i

)
vi

γi − 1
, γi = const > 1, p∞,i = const > 0 (4.3)

condition (4.2) is satisfied if

γi < Γ, i = 1, 2. (4.4)

For a given �, the Hugoniot surface in the space (P, v, α2) is given by

2∑
i=1

yi

(
εi(vi, P − (Γ − 1)�v−Γ ) + �v−Γ vi − εi0 + 1

2
(P + P0)(vi − vi0)

)
= 0. (4.5)

4.1. Remarks about closure relations for the equilibrium model

When the two-velocity effects are ignored (� = 0), Dremin & Karpukhin (1960),
McQueen et al. (1970), and Alekseev et al. (1971) proposed replacing the total
energy equation by the energy equations for each component, i.e. to assume that
each component follows its own Hugoniot. The equilibrium state, in the absence of
microkinetic energy, is determined as a solution of the following system:

εi (vi, p) − εi (vi0, p0) + 1
2
(p + p0)(vi − vi0) = 0, i = 1, 2, (4.6a)

y2 = y20, ρ(u − D) = ρ0(u0 − D) = −ρ0D = m = const, (4.6b, c)

p − p0 + m2(v − v0) = 0. (4.6d)

Relations (4.6) imply conservation of the total energy. This method which is usually
called the ‘additivity principle’ can easily be generalized to the case of many
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components. This approach has been intensively validated on more than 200 tests
involving mixtures of materials with varying density ratio and acoustic impedance,
weak and very strong shock waves (Trunin 2001). The same type of validation was
done in Saurel et al. (2007) where a theoretical justification of this method for weak
shocks was given. It was shown that if phase transitions or internal damage do
not occur during shock loading, the additivity principle describes with a very good
accuracy equilibrium mechanical characteristics of shocked components (pressure,
particle velocity etc.).

4.2. Additivity principle for the non-equilibrium model

We propose the analogue of the additivity principle (4.6) for the closure of Rankine–
Hugoniot relations when the microkinetic energy is present. The total energy equation
(4.5) is satisfied, if we take the energy equation for each component in the form

εi(vi, P − (Γ − 1)�v−Γ ) + �v−Γ vi − εi,0 + 1
2
(P + P0)(vi − vi0) = 0, i = 1, 2. (4.7)

However, this does not solve the closure problem completely. Indeed, the value of the
turbulent entropy � generated in the shock front is unknown. For a given �, equations
(4.7) allow us to obtain the total pressure P as a function of v and �:

P = P H (v, �)

or the specific volume v as a function of P and �:

v = vH (P, �).

As an example, consider the equation of state of stiffened gas (4.3). Equations (4.7)
for shocks of high amplitude (p0 is negligible with respect to P and p∞,i) are:

(P + γip∞,i)vi

γi − 1
− γip∞,ivi0

γi − 1
+ 1

2
P (vi − vi0) − Γ − γi

γi − 1
�v−Γ vi = 0.

This allows to obtain v = vH (P, �) implicitly from the relation

v =

2∑
i=1

yivi =

2∑
i=1

yivi0

(
P

2
+

γip∞,i

γi − 1

)
P (γi + 1)

2(γi − 1)
+

γip∞,i

γi − 1
− Γ − γi

γi − 1
�v−Γ

. (4.8)

It can be found from (4.8) that

∂vH

∂�

∣∣∣∣
P=const

> 0

if inequalities (4.4) are satisfied. Hence, the mixture Hugoniots for the stiffened gas
equation of state form a monotonic family of curves in the plane (v, P ) (see figure 2).

4.3. Turbulent energy creation in a shock

The first step is to determine the production of the turbulent entropy in the shock front.
For this, we exploit the idea proposed in Gavrilyuk & Saurel (2006) for turbulent gas
flows. If the family of Hugoniots is monotonic, there exists a critical value of the tur-
bulent entropy �∗ such that the Rayleigh line is tangent to the critical Hugoniot curve.
This tangent point is denoted CJ in figure 2. The condition of tangency is reminiscent
of the Chapman–Jouget condition in detonation theory (Fickett & Davis 1979).

We will assume that the turbulent energy which is created in the shock front is equal
to the turbulent energy corresponding to this maximal value of the turbulent entropy.
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Figure 2. The family P H (v, �) is monotonic with respect to �. For the stiffened gas equation
of state a sufficient condition of that is given by (4.4). This implies the existence of a point
(denoted by CJ in the figure) where the turbulent Hugoniot curve is tangent to the Rayleigh
line. The initial pressure p0 is taken as zero.

Then the state behind the shock front is completely determined: when the turbulent
entropy is equal to the critical value � = �∗, we can determine the specific volume v∗,
the critical total pressure P∗ and the volume concentration α2∗ corresponding to the
CJ point.

The equations determining the critical state are

P − P0 + m2(vH (P, �) − v0) = 0, m2 dvH (P, �)

dP
+ 1 = 0, (4.9)

where vH (P, �) is the mixture Hugoniot. For each m2 > ρ2
0c

2
W0 system (4.9) determines

a unique solution (v∗, P∗, �∗). For example, for the mixture where each component
can be described by the stiffened gas equation of state, the mixture Hugoniot is given
by (4.8). The corresponding volume fractions and specific volumes of each component
vi∗ are determined by

αi∗ =
yivi∗

v∗
, vi∗ =

vi0

(
P∗

2
+

γip∞,i

γi − 1

)
P∗ (γi + 1)

2(γi − 1)
+

γip∞,i

γi − 1
− Γ − γi

γi − 1
�v−Γ

∗

.

5. Relaxation process
Once the state denoted by an asterisk is determined, we need to find the final

relaxed state in which the turbulent entropy is zero. In most mixtures of materials
thermal relaxation occurs much more slower than pressure and velocity relaxation.
We will formulate this assumption mathematically.

Let us introduce the entropy concentrations (Resnyansky & Bourne 2004):

χi =
yiηi

η
, i = 1, 2.

We will consider one of the entropy concentrations (for example, χ2) and the mixture
entropy η as new variables instead of the phase entropies ηi . We take the evolution
equation for the entropy concentrations χi in the form

dχi

dt
= χ̇i , χ̇1 = −χ̇2. (5.1)
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Here χ̇i are unknown production terms to be determined. Equation (3.2) can be
rewritten in terms of the entropy concentrations:(

2∑
i=1

χiθi

)
dη

dt
= −ηχ̇2 (θ2 − θ1) + ρΓ −1 �

τrel

,

where � � 0. To satisfy the entropy inequality, we need to assume that χ̇2 is
proportional to the difference of temperatures:

χ̇2 = λ (θ1 − θ2) , λ > 0.

So, χ̇2 characterizes the heat exchange between components. The entropy inequality
will be (

2∑
i=1

χiθi

)
dη

dt
= λη (θ2 − θ1)

2 + ρΓ −1 �

τrel

� 0.

In most mixtures of materials, thermal equilibrium is reached much slower than
mechanical equilibrium (Krueger & Vreeland 1991; Kapila et al. 2001). This
means that heat exchange between components is negligible. Hence, a reasonable
approximation in the relaxation zone is that χ̇2 = 0, i.e. the entropy concentrations
χi satisfy the equation

∂χi

∂t
+ u · ∇χi = 0. (5.2)

Equation (5.2) means that the entropy of each phase increases during the relaxation
process is due only to the turbulence relaxation and is independent of the temperature
difference. Finally, with the assumption χ̇i = 0, i = 1, 2, in the stationary relaxation
zone we have

yiηi

η
= χi = χi∗ =

yiηi∗

η∗
. (5.3)

When the mixture entropy increases, the entropy of each phase increases according
to

ηi =
χi∗

yi

η.

Relation (5.3) is equivalent to
η1

η2

=
η1∗

η2∗
. (5.4)

To determine the equilibrium mixture parameters, it is now sufficient to use the
conservation of the mass, the momentum and the energy in the turbulence-free state
(� = 0), supplemented by (5.4). We remark that it is possible to rigorously prove the
existence of shock fronts by using the mixture entropy as the Lyapunov function.

Condition (5.4) is well-defined at the final equilibrium state. In particular, the
entropy of each phase can be calculated through the equations of state of individual
components. On the other hand, it is difficult, even almost impossible, to distinguish
the thermodynamic entropies from the turbulent entropy at the shocked state * .
Indeed, this state is completely non-equilibrium, and the entropy ratio (5.4) should
be calculated in terms of average characteristics of the state * . The equations of state
of each phase at equilibrium state are

pi + p∞,i = exp

(
ηi

ci

)
v

−γi

i , i = 1, 2, p1 = p2 = p.
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p∞ (Pa) γ ρ0 (kg/m3) α0

Epoxy 5.3 × 109 2.43 1185 0.59
Spinel 141 × 109 1.62 3622 0.41

Table 1. Parameters of the expoxy and spinel components used in the experiments.

Here ci are specific heats which are assumed to be constant. Hence,

ηi = ci ln
(
(p + p∞,i)v

γi

i

)
.

We define the entropy ratio (5.4) of the non-equilibrium state through the total
average pressure P∗:

η1∗

η2∗
=

c1 ln
(
(P∗ + p∞,1)v

γ1

1∗
)

c2 ln
(
(P∗ + p∞,2)v

γ2

2∗
) .

Relation (5.4) can be written as

ln
(
(p + p∞,1)v

γ1

1

)
ln

(
(p + p∞,2)v

γ2

2

) = a∗ =
ln

(
(P∗ + p∞,1)v

γ1

1∗
)

ln
(
(P∗ + p∞,2)v

γ2

2∗
) . (5.5)

The parameter a∗ does not vary significantly with the shock amplitude. Note that
with this approach the relaxed state does not depend on the specific heats.

Relation (5.5) supplemented by the conservation of the mass, the momentum and
the energy in the form

ρ(u − D) = −ρ0D = m = m∗ = ρ∗(u∗ − D), p + m2(v − v0) = 0,

2∑
i=1

yi

(
(p + γip∞,i)vi

γi − 1
− γip∞,ivi0

γi − 1
+

1

2
p(vi − vi0)

)
= 0

determines the final relaxed state (p, v, α2).

6. Comparison with experiments
We have chosen an epoxy–spinel mixture, experimentally studied in Marsh (1980)

with the parameters of the components as given in table 1. The ratio ∆ of the
specific turbulent energy k/ρ to the specific mixture internal energy ε at state * is
shown in figure 3 as a function of the dimensionless shock velocity D/cW0. The Wood
sound speed of the epoxy–spinel mixture at the initial state cW0 is 3120 m s−1. The
turbulent energy increases very slowly at the beginning and attains the level 0.3–0.4
for shock velocities of the order of 104 m s−1. This is in agreement with the numerical
experiments of Benson et al. (1997) where they recorded a similar level for shock
loading of granular materials.

Figure 4 shows the dependence of the shock velocity D on the particle velocity
u. The upper thin curve corresponds to the intermediate state * where the turbulent
entropy � is maximal, the lower bold line corresponds to the final equilibrium
state, and the symbols correspond to the experiments (Marsh 1980). Assume
that the front velocity D is prescribed. We see that the two-velocity effects are
extremely important at the first stage of compression: the critical state is far from
equilibrium. In the relaxation zone, the particle velocity increases because the turbulent
energy is transformed into internal energy resulting in a thermodynamic pressure
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Figure 3. Ratio ∆ of the specific turbulent energy k/ρ to the specific internal energy ε at
point * is shown as a function of the dimensionless shock velocity D/cW0. The Wood sound
velocity of the epoxy–spinel mixture at the initial state cW0 is 3120m s−1.
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Figure 4. Dependence of the shock velocity D on the particle velocity u. The upper thin curve
corresponds to the intermediate state * where the turbulent entropy is maximal, the lower bold
line corresponds to the final equilibrium state. The symbols correspond to the experiments
(Marsh 1980).

increase. The final equilibrium state is in excellent agreement with the experimental
data.

We also compared two (D, u) diagrams. One corresponds to the final equilibrium
state obtained by the two-stage mechanism proposed in this paper (bold line in
figure 5), and the other one corresponds to the approach by Dremin & Karpukhin
(1960), McQueen et al. (1970), and Alekseev et al. (1971) (the dashed line in figure 5).
Both approaches agree well with the experimental data. The main difference between
them is that the last approach is not able to capture an important ‘virtual’ parameter
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Figure 5. Dependence of the shock velocity D on the particle velocity u. The bold line
corresponds to the final equilibrium state obtained through a two-step mechanism proposed
here. The dashed line corresponds to the approach by Dremin & Karpukhin (1960) who used
the Hugoniots of components. The symbols correspond to the experiments (Marsh 1980).

of the shock loading process – the mixture microkinetic energy. Accounting for the
microkinetic energy results in an important difference in the partition of the energies
between phases.

The authors thank E. Daniel, O. Le Metayer and J. Massoni for useful discussions,
and anonymous referees for important remarks and suggestions. S.G. would like to
thank V. Nesterenko for introducing him to the physics of the microkinetic energy
formation.
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